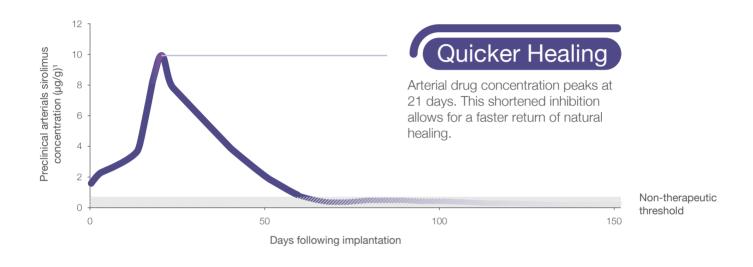

Healing-Targeted Drug Eluting Stent

FIT SUPREME

Drug Coated Coronary Stent System



Advanced Coating System | Safe Clinical Data | Superior Deliverability |

HEALING-TARGETED

A new class of DES tailored for rapid healing

Rapid Bioabsorption

Biodegradable polymer is absorbed in less than 60 days² leaving an eG coated stent and allowing for faster, unhindered reendothelialization to occur.

¹ von Birgelen C. et al. First-in-man randomised comparison of the BuMA Supreme biodegradable polymer sirolimus-eluting stent versus a durable polymer zotarolimus-eluting coronary stent: the PIONEER trial. EuroIntervention. 2018 Apr 20;13(17):2026-2035.

² Data on file at SINOMED.

SAFETY-TARGETED

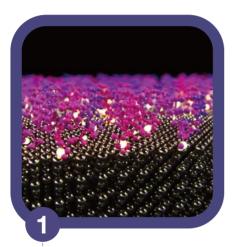
* Value is significantly higher than HT Supreme. † Value is significantly lower than other DES.

Functional Healing

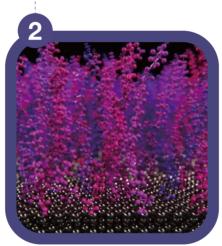
Preclinical data showed less Evans Blue uptake, indicating healthier healing of endothelial cells and better return of functionality.

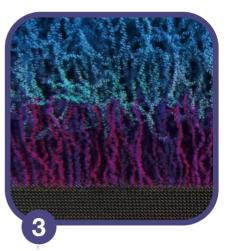
Safe Outcomes

HT Supreme demonstrated low event rates in clinical trials. Long-term results may show an advantage of the healing effect.


^{3.} Data on file at SINOMED.

⁴ Lansky et al. Novel Healing-Targeted DES with Synchronized Antiproliferative Drug Delivery to Target Smooth Muscle Cell Proliferation after DES implantation in Coronary Artery Disease. Oral presentation. AHA Late-Breaking Trials Session 2020.


CONSISTENCY-TARGETED


eG[®] coated for stronger coating integrity and more consistent results

How eG Coating is Made?

Stent is submerged in a monomer solution, an electric current is applied and coating is electro-grafted to the stent. Electric current is cycled, causing a brush-like structure of eG coating to be synthesized onto the surface of the stent.

The filament-like structure of the *e*G coating allows interdigitation of the PLGA coating, forming a strong bond.

*e*G coating allows the polymer to have excellent coating integrity, even after tortuous-path testing and balloon expansion (seen in scanning electron microscopy⁵).

DELIVERABILITY-TARGETED

Stent and delivery system designed for excellent deliverability

Better metal-to- o artery ratio

Stent design allows for better scaffolding and consistent drug release.

inner in the second

Thin strut design

Cobalt chromium stent material with thin-strut design for better outcomes.

0

Lubricious coating

Lubricious coating on the distal shaft improves deliverability for difficult lesions.

Helical connectors

Three-helical connectors per segment allows for better flexibility without sacrificing stability.

Technical Information

Stent Material	Cobalt Chromium Alloy	Strut Thickness	80 µm
Base Layer	eG [®] Coating	Recommend Guiding Catheter	5 F
Polymer Material	PLGA	Recommend Guiding Wire	0.014"
Drug Dose	Sirolimus 1.2 µg / mm²	Delivery System Length	145 cm

Ordering Information

Diameter	Length (mm)							
(mm)	10	15	20	25	30	35		
2.25	BMA-2.2510	BMA-2.2515	BMA-2.2520	BMA-2.2525	BMA-2.2530	BMA-2.2535		
2.50	BMA-2.5010	BMA-2.5015	BMA-2.5020	BMA-2.5025	BMA-2.5030	BMA-2.5035		
2.75	BMA-2.7510	BMA-2.7515	BMA-2.7520	BMA-2.7525	BMA-2.7530	BMA-2.7535		
3.00	BMA-3.0010	BMA-3.0015	BMA-3.0020	BMA-3.0025	BMA-3.0030	BMA-3.0035		
3.25	BMA-3.2510	BMA-3.2515	BMA-3.2520	BMA-3.2525	BMA-3.2530	BMA-3.2535		
3.50	BMA-3.5010	BMA-3.5015	BMA-3.5020	BMA-3.5025	BMA-3.5030	BMA-3.5035		
4.00	BMA-4.0010	BMA-4.0015	BMA-4.0020	BMA-4.0025	BMA-4.0030	BMA-4.0035		

Compliance Information

Pressure (atm)	Diameter (mm)						
	2.25	2.50	2.75	3.00	3.25	3.50	4.00
10	2.25	2.50	2.75	3.00	3.25	3.50	3.80
12	2.29	2.62	2.83	3.09	3.32	3.63	4.00
16	2.38	2.77	3.00	3.26	3.49	3.85	4.14
18	2.43	2.85	3.07	3.34	3.57	3.98	-

NP RBP

© SINOMED - All rights reserved.

SINOMED is a registered trademark of Sino Medical Sciences Technology Inc. in China, Europe and USA. eG° is a registered trademark of AVENI in Europe, Taiwan, Singapore, Israel and Canada.

Sino Medical Sciences Technology Inc.

SINOMED B.V

2nd Floor, TEDA Biopharm Res, Building B #5 4th St, TEDA Tianjin, China T: +86 022 5986 2900 F: +86 022 5986 2904 www.sinomed.com Wilhelminakade 173, 3072AP Rotterdam The Netherlands T: +31 10 307 6295 F: +31 10 307 6296 E: globalbusiness@sinomed.com

